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Ministry of Supply 

ARMAMENT RESEARCH ESTABLISHMENT 

REPORT No. 22/50 

(Theoretical Research Report No. 7/50) 

The Passage of a Detonation Wave across the Interface 
between Two Explosives 

H.H.M. Pike    and   R.E. Weir 

Summary 

This report is divided into two parts.      In the first we consider what 
happens when a plane detonation wave crosses a plane interface, parallel to 
that front, between two different explosives.      The case of most interest is 
that in which the first explosive overdrives the second, the pressure and 
detonation velocity in the second explosive having values higher than normal 
and the Chapman-Jouguet condition not being satisfied.      This is known as the 
"carry-over" effect and it would persist indefinitely if the two explosives 
were infinite in extent, but for charges of finite size it fades away in a 
distance comparable with charge dimensions.      The effect of the finite reaction 
rate is to produce a zone, of thiokness a few millimetres, which the detonation 
front must traverse before the carry-over effect is fully established. 

Criteria are given for deciding whether or no carry-over will occur in any 
particular case, and numerical results are given for a few oases in which it 
does occur.      The most interesting result is that carry-over produces a far 
greater increase in pressure than in detonation velocity. 

The second part deals with oblique incidence of the detonation front on 
the interface.      Only steady cases are considered and no essentially new result 
is obtained.      The magnitude of the carry-over effect varies with angle of 
incidence and disappears for sufficiently large departures from head-on 
incidence. 

Two subsidiary results of some interest are derived.      The first is that 
the Chapman-Jouguet condition is not sufficient to ensure a steady detonation 
velocity if the dominant reaction near the end of the reaction zone is of zero 
order.      If the reaotion is of higher order then it is never quite completed 
and we have to define reaction-zone thickness in a manner analogous to the 
definition of shock-front thickness.      The second is that the intersection of 
two detonation waves inside an explosive is always regular, no Maoh wave being 
produced. 

M.186/50 
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Part I,    The Head-On Case 

1. Introduction 

It has been observed experimentally that when a detonation wave passes 
from one explosive to another its velocity in the second explosive may not 
settle down to its usual value until the wave has travelled a distance of 
several centimetres.  This "carry-over" effect, as it is called, does not 
always occur and it is the purpose of the first part of this report to 
explain the phenomenon and to give a guide for deciding whether or not it 
will occur. 

We treat detonation waves in the first place as perfectly one-dimensional 
i.e. as plane waves travelling in explosives of infinite extent, the plane of 
the detonation front being parallel to the interface between the two explosives. 
Modifications due to the finite dimensions of actual explosives are then dealt 
with quite briefly.  in a detonation wave the transition from undisturbed 
conditions ahead of the wave to steady conditions behind it occurs in the 
reaction zone, whose thickness is of the order of a millimetre.  When the 
front of this zone strikes the interface a shock or rarefaction wave may pass 
back through the zone, so disturbing the reaction.  There will therefore be 
a narrow zone of the first explosive, of thickness less than a millimetre, 
whose properties may be different from those of the bulk of the products of 
detonation of that explosive.  The same may also be true of a narrow zone of 
the second explosive adjoining the interface.  In the extreme case when the 
second explosive is replaced by a vacuum part of this narrow zone in the first 
explosive may not react at all.  We shall ignore this intermediate zone in 
the first place i.e. treat the reaction zone in either explosive as being 
infinitely thin, a brief discussion will then show that in the cases which we 
have in mind the presence of the intermediate zone may delay the setting-up of 
the proper carry-over conditions so that the full effect may not be quite 
attained in charges of finite dimensions. 

We shall first assume that there is no carry-over and determine the 
conditions to ensure this.  When these conditions are not satisfied we shall 
show how to calculate the magnitude of the carry-over effect and illustrate 
the method by a series of examples. 

In the second part of this report the same methods are applied to oases 
where the detonation front is not parallel to the interface.  Only steady 
cases are considered and no essentially new phenomenon is introduced.  Some 
examples are givenfor a particular pair of explosives.  For some angles of 
incidence depending on the explosives used, steady conditions are not possible 
but we may get a quasi-steady solution starting from a point on the interface 
and with all linear dimensions growing at a constant rate. 

2. The essential equations 

We start with explosive at rest at atmospheric pressure p0 and specific 
volume v0, through which a shock front travels with velocity d.      The front 
is followed by a very thin reaction zone in which an amount of chemical energy 
q'  is liberated per unit mass of material passing through.      Since the flow is 
one-dimensional, conservation of mass, momentum and energy yield the three 
relations 

• 

vj=i>A*i£7 4   Ve^X ^   ** • (p -Po)(vo - v) (1) 

d1 =Vo2(p-p„)/(v0 -v) (2) 

and e - e0 = q' + £ (p + p0)(v0 - v) (3) 

where e is the internal energy per unit mass. 
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For a pure shock q' = 0.  We assume q' to be given in any case and e to 
be a known function of p and v.  For a* given v0 we then have three equations 
for the four unknowns w, d, v and p, so that given any one of these the others 
are determined.  For a pure detonation wave we have the ChapmajWouguet 
condition 

d • w + c (V) 

where c is the local velocity of sound.  We can express c in terms of p and v, 

C" 

which is known since e is expressible in terms of p and v.      This extra condition 
is sufficient to determine all the unknowns. 

For gases e = pv/(y - 1) to a good approximation and y is of order 1.3. 
For solid explosives a fair approximation can be had by putting e = pv/2 i.e. 
y • 3.      For gases p0v0/d

8  is usually of order .01  to .02 while for solid 
explosives it is of order 10"S.      If we neglect terms of this order in 
comparison with terms of order unity then the solutions of the equations can 
be put in the simple approximate form 

Pi « 2(y - 1) q/v0 (6) 

v2 « y v0/(y + 1) (7) 

V  -2(/   -1)  q (8) 

and w2 = da/(y • 1) 

or                                                       w2
8 m 2(y - 1) q/(y + 1) (9) 

For convenience we have added e0 to q', i.e. 

q =  q'  + e0 (l0) 

e0 is usually of order 5 to 10£ of q and so should not be neglected.  The 
approximation e0 = PoVo/(y - 1) is fairly good for gases but too small by a 
factor < .01 for solid explosives. 

These equations only suffice for a very qualitative discussion.  We can 
however, use equally simple relations with reasonable accuracy if we choose y 
to give the correct isentropio variation of p with v for conditions near to 
those obtaining in the Chapman->Jouguet plane under normal detonation conditions. 

We use suffix 2 to indicate exact solutions of the detonation equations (1) 
to (5).  Let suffix 3 indicate some other solution of (1) to (3) but not (4), 
i.e. an unstable detonation wave.  We shall only consider cases where Ps > Pz 
i.e. d3 > dj.  Then substituting both solutions in (3) and subtracting we have 

i 
•3 - •* • i Ps(v0  - •»)  - i Pa(vo  - v2) + i Po(Va  - •,) (11) 

For solid explosives the p0 term is quite negligible.      Provided we know p, and 
v2  this gives a relation between ps and v3  so that given the former we can 
determine w3 and d3 from (1) and (2).      We shall be interested mainly in values 
of p3  less than twice p2 and we can show that if (p3  - p2)/p2   is a small 
quantity then the difference in entropy between tie two states is a small 
quantity of a higher order.      We are therefore justified in writing 

e3  - e2 = (p3 v3 - p2v2)/(y - 1) (12) 
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where y • o*VPtV« • Oa/*a (13) 

and (12) holds with good accuracy for any explosive provided Ps  is not ouch 
greater than p2.      Substituting (12) in (11) we have 

•^44 (Psvs - PtVt) = (Ps - Pa)vo + Po(vt  - v5) (14) 

where the p0 term may be dropped for dense explosives.      In that case we may 
write 

w,a = v»(2 p, -Pa)/(y + 1) 

ana *    "W*. .«.^{*[2-£]} (15) 
If a pure shock travels through the detonation products, producing a peak 

pressure p, then v3 and WJ are given by equations (1) to (3) with suffix 0 
replaced by suffix 2.  The velocity of the products in condition 2 has now to 
be added to Wj.  If pj is not much greater than Pt we may again use y as 
defined by (13); this leads to 

|w, - w«| = (p, - p«) A.2. vt/[(y + l)p, * (y - l)p«l]      (16) 

On the other hand a pure rarefaction wave produces a change in velocity 

l*-*l-y?r[i-Rj        J (17) 

3. The conditions for no carry-over 

We assume first of all that the reaction zone is of negligible thickness 
and that the detonation front has passed the interface between two explosives, 
changing instantly to conditions appropriate to a steady plane detonation nave 
in the second explosive.  Let us use large letters to denote conditions in 
the products of detonation of the first explosive and small ones for the second. 
m general P2 \ p2, W2 ^ w2 and so there must be a wave, spreading out in both 
directions from the interface, of such a nature as to make pressure and fluid 
velocity continuous across the interface.  Four possible oases can arise since 
each edge of the wave may be either a shock front or the leading edge of a 
rarefaction wave.  If the wave going forward into the products of the second 
explosive is a rarefaction wave its leading edge will travel with velocity o2 
and, owing to the Chapman-Jouguet condition, it will never be able to pass 
through the reaction zone but will follow immediately behind it.  The velocity 
of detonation will therefore be unaffected but the pressure behind the wave front 
will fall rapidly to some value less than p2.  On the other hand if the leading 
edge of the wave is a shock this will travel at supersonic speed and so will 
penetrate through the Chapman-Jouguet plane and increase the detonation 
velocity.  There will then be a region of uniform pressure p3 > p2 behind the 
front and extending back to the interface. 

The definition of carry-over is a change in detonation velocity; the 
necessary condition for no carry-over is therefore that the pressure at the 
interface, p3 < p2.  Whether the edge of the wave going back into the second 
explosive is a shock or a rarefaction is only of importance in so far as it 
affects the conditions governing the nature of the forward-moving edge. 

Since there are four cases the existence of carry-over in any particular 
case does not imply its absence when the explosives are interchanged.  The 
converse is also true. 

For brevity we write ir for Pa/Pa and II for Ps/Pi (since pj = Pj),  If 
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there is no carry-over we have, since the rarefaction reduces w 

w, =w2 -f?j{i -«<y-0/«yJ (18) 

and if the backward moving wave is a shock then 

w, .¥, .(n-1) 42p2v2/{(r + i)n+ r -ij]      (19) 

The following argument is taken from Peterson (1948):-   w3  is a monotonic 
increasing function of irf being equal to w2 when ir = 1 •      Again W3 is a 
monotonic decreasing function of II, and II increases or decreases in proportion 
to v when p2 and P2 are fixed.      Hence the condition that ir < 1 when W3 • w3 
is equivalent to w3 > W3 for ir = 1, i.e. 

w2 - W, > - (p2 - P.) J[2 v2/[(r + 1 )p2 + (r - 1)P2] (20) 

This is the governing condition only when II > 1, which is equivalent to Wj > w3 
for n = 1, i.e„ 

If (21) is not fulfilled then a rarefaction wave accelerates the first 
fluid forward i.e. W3 > W2 and (20) must be replaced by 

on   r     r 4•>/2IS 
^-'••fM'-Lfcj        J (22) 

When the equality in the primary oondition (21) is satisfied conditions (20) 
and (22) are equivalent although not quite identical. 

If we use the approximate solution (6) to (10) of the detonation equations 
then (21), (20) and (22) become either 

- frt C^ - Xi^J/Uy-i)qv0 + 2(V-9i)2Qv0/(r+i)J 7 [$TT *J - 

or alternatively if 

m *i - ft*'] • *JM D - B^T'I 
then it must also be greater than or equal to the same expression with large 
and small letters interchanged. 

We have reduced the condition for no carry-over to a condition on the three 
independent parameters specifying an explosive namely q, the heat of detonation 
per unit mass, v0 the initial specific volume and y the adiabatic exponent for 
the products.  For gas mixtures y will be of order 1.3 but will vary somewhat. 
We can get a very rough guide to the behaviour of solid explosives if we take 
T = y = 3 and then the conditions simplify to either 

* 

(Q V0  - q V0)/VJ£ Vo(2q V0  + Q v0)]   < /(q)  - V(Q)  < 3V(q) • {1   - (Q v0/q Vo)1"} 
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or alternatively if 

V(q) - VT[Q)  > 3 V(q)  {1   - (Q v0/q V0)
,/5l 

then it must also be greater than or equal to the same expression with large 
and small letters interchanged. 

For two explosives with the same initial density we get no carry-over if 
q > Q and vice versa.      Again if q = Q ws get no carry-over if the initial 
density of the second explosive exceeds that of the first.      These results 
are almost obvious. 

We have determined the necessary conditions for no carry-over.      If we 
consider all the cases that can arise we can show that they are sufficient. 

4. Calculation of the initial detonation velocity when oarry-over occurs 

We have determined the conditions necessary to prevent carry-over and we 
have also seen that when carry-over does occur the Chapman-Jouguet condition 
is no longer satisfied.      We then get an increased detonation velocity, which 
would be permanent in the ideal plane-wave case.      In practical cases however, 
the first explosive is of limited length and in consequence there is a pressure 
gradient behind the detonation wave as it travels through the first explosive, 
the pressure falling steadily with distance behind the reaction zone.      Owing 
to the Chapman-Jbuguet condition this rarefaction wave cannot affect the 
detonation velocity in the first explosive but if the Chapman-Couguet condition 
is not observed in the early stages in the second explosive this rarefaction 
wave will pass through the reaction zone and reduce the detonation velocity 
until Chapman-Jouguet conditions are restored.      If the explosive is of finite 
cross-section then rarefaction waves coming in from the sides increase the 
pressure gradient behind the front.      The distance the detonation wave travels 
in the second explosive before the carry-over entirely disappears will therefore 
be comparable with the least dimension of either explosive. 

5. The effect of finite reaction rate 

In connection with studies of initiation Eyring et.al. (1949) have 
calculated the rate at which a detonation wave, started at the wrong velocity, 
will build-up, or build-down, to the steady value.  Their calculations are 
based on the assumption that at any instant d equals the sum, c + w, obtaining 
at the rear of the reaction zone a short time r earlier.  This leads 
immediately to d approaching its correct value in a time of order 3T.      T  is 
defined as approximately the time taken for a fluid element to pass through 
the reaction zone, but to this should be added the time taken for a signal to 
pass from the rear of the reaction zone to the front of the wave, which may be 
considerably longer since it has to travel against the stream.  It is clear 
that the settling-down distance in the infinite-plane case must increase 
roughly in proportion to r but difficult to deduce the factor of proportiona- 
lity; Eyring's theory is too crude to do more than indicate the order of 
magnitude. 

The following discussion may help to clarify our ideas.  The detonation 
wave is led by a strong shock front, which is so very thin that inside it no 
appreciable amount of reaction occurs.  The velocity of this shock front and 
so of the detonation wave as a whole depends only on the shock pressure and 
the mechanical properties of the unreacted explosive, but the energy necessary 
to prevent that shock from decaying comes from the reaction.  Its velocity 
does in fact depend on conditions at every point of the reaction zone. 
Different parts of the reaction zone also depend on each other.  If therefore, 
the system is in equilibrium until at some time a disturbance originates at 
some point in the reaction zone, then waves will travel out from that point in 
both directions with a velocity nearly equal to the local velocity of sound 
superimposed on the local material velocity.  The backward-travelling wave 
will reach the back of the reaction zone very quickly and change conditions 
there.  A new wave must then move forward through the entire length of the 
reaction zone to change the velocity of the shock front.  This forward moving 
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wave travels at a speed very little different from that of the front itself, 
in its early stages and so will take a comparatively long time r to reach the 
front.  The detonation velocity will therefore settle down to its new value 
in a time comparable with r, say yr, 

The wave will spend most of the time r travelling through the first 10$ 
or so of the reaction zone length 1.  We can therefore form an estimate of T 
if we simplify the problem by using approximations valid for the rear part of 
the reaction zone.  For our present purposes it will suffice to use the 
ideal-gas equation of state; we can then make use of the results obtained 
for the steady flow of reacting gases through ducts by Chambre and Lin (1946). 
These authors made an error in the effect of variation of cross-section of the 
duct, which is given correctly by Hicks et.al. (1947). 

During the reaction the number of moles n of gas per unit mass will change 
and this change may be just as important as the release of thermal energy. 
For steady plane parallel flow we have 

du      1    [dq dxi} 
u = y(1 -M2) ^e + nj 

do 1 - y M2 fdq  dn) ,_,» 

U2 1 + y M* fda  dn") 
~W ' y(1 -M2) [e + nj 
dM8 

where M is the local Mach number u/c.  Making the approximations u = u2, 
o = o2, n = n2 and M = 1 wherever possible we find since u2 = c2 

1 -M2 =— (c -u) o2 
v    ' 

so that on substituting for (1 - M2) and integrating again we have to first 
order 

f° -u^ = y +1 fq? - q + *•* -A 
l c2 J    2y [ e2     na J 

Near the end of the reaction zone we may expect one  type of reaction to 
predominate and so we write 

n2  - n _ k qg  - q 
ifc       " e2 

Using equations (1) to (10) we have 

C - U = ^y1 C* ^(1 + kX1 - V<i«)J 

= ^a, V1(1 • k)(l - q/q^)! 

'where q is here the heat liberated up to some definite point in the reaction. 

If x is the distance from the rear of a reaction zone of length 1 then 
the time of passage of a very weak signal from the rear to the front of the 
wave 

••I' dx/(c - u) 
-6- 



If the final reaction is of zero order then to a sufficient approximation we 
may write 

q/qz  = 1 - b x/l 

where b is a constant.  On integrating we get 

r=i/|b(l+k)} (24) 

For any higher order depending on x we should find r = » i.e.  that no 
infinitesimal disturbance could get through the Chapman-Jouguet plane.      The 
fact that T is finite for a zero-order reaction means that in such a case the 
detonation wave is not truly stable. 

Any higher-order reaction will never go to completion in a finite time 
i.e.  the zone will be of infinite thickness.      In such cases it is convenient 
to define a conventional reaction-zone thickness on the same lines as that 
proposed for shock-front thicknesses by Taylor and Maccoll (1935).      If q'  is 
the total heat liberated in the reaction then on dividing q   by the maximum 
value of dq'/dx we get a length 1 which we can define as the .reaction-zone 
thickness,.     It is, of course, always an underestimate. 

Since any higher order reaction is never completed we are forced to take 
into account the finite size of the charge.      We then find that the detonation 
front is no longer plane, but slightly convex when viewed from the non-reacted 
side (Eyring, loc.cit.) and the curvature of the central portion determines 
the speed of propagation of the wave.      The curved shock front causes the 
material flowing through it to diverge slightly and we may still treat the 
flow as one-dimensional but in a slowly diverging duct.      If a is the cross- 
section of the duct then equations (23) now become 

du 1 fdq     dn dal 
u =   y(1  -Mz) I e  +   n  " y   a J 

o      2y(1  -M2) ^e+n      y   aj + * a ^5' 

1  + y M8    fdq     dn da"]      da 
= y(1  - M2)    te   +   n"yaj"a M2 

Since by definition 

dM2 fdu 
M2 " 4 ]11 

du _ do ( 

and u2 = c2 we have as before 

1   -M* = 2(c - u)/c2 

while on integrating again we have approximately 

f° -UT = Y* 1   f^ - 8 + Bl  -n - y SJL-=St - 2   f&2° ~u &        (2&\ 
I   o2 J 2y    L   e* «* **    J L °2    *2        ^     ' 

* fit 

Now the differential coefficient of the expression inside the bracket on the 
right hand side is zero on the Chapman-Jouguet surface.      For sufficiently 
small values of x the right hand side can therefore be expressed as a 
polynomial in x, the lowest order term being A2^ where A is a constant. 
A*  includes a contribution from the integral.      Henoe to first order 

(c - u)/c2  = Ax 
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and we still find that an infinitesimal disturbance takes a logarithmically 
infinite time to get through the reaction zone. 

Any finite disturbance A that can be produced by a combination of 
simultaneous changes in q, n and a (these can force a change in pressure) 
gives an initial value of (c - u) proportional to VA, which amounts to almost 
the same thing as starting with an initial value of x proportional to VA. 
The transit time r is now proportional to log v^A,/A) i.e. to - log (A/A,)f 
where A, is a constant.  We may include in r  the relatively short time taken 
by a signal to travel back from the shock front to the rear.  It is then 
plausible to assume that in every interval r the disturbance is reduced by a 
constant factor f, of order 2 or 3.  Of course as the strength of the 
disturbance diminishes the time interval t  increases and the strength of the 
disturbance at any point diminishes in a series of jumps at successive time 
intervals.  For the average rate of decrease we have 

d log (A/A,)  logf    -B 
dt        r    log (A/A, ) 

where B is a constant of proportionality.      This integrates to give 

A = A,   exp - V]2B(t - t,)j (27) 

i.e. the disturbance diminishes exponentially with Vt.  We have found that a 
disturbance to the detonation velocity dies away much more rapidly than a 
disturbance to a thermodynamic property of the material, such as the pressure 
[c.f. equation (28)].  Presumably this could be allowed for by using a larger 
parameter B when A represents the disturbance to d[Ad ~ (Ap)2]. 

When a detonation wave passes across the interface between two explosives 
the initial conditions in the second explosive will usually be far from 
equilibrium, i.e. (c - u)/d will be quite large (but < 1 of course) and so the 
bulk of the disequilibrium will disappear while the front travels a few reaction 
zone lengths (as defined above) and the detonation velocity will then approxi- 
mate either to the normal value da or, if carry-over obtains, to a value ds 
related to the pressure ps in the products of detonation.  This pressure ps 
is itself falling however, owing to expansion of the detonation products, both 
radially and back along the axis of the charge.  If the charge dimensions are 
all very large d3 will fall in step with p3 but if ps falls quickly dj will 
lag behind owing to the time delay through the reaction zone.  As dj -• da 
this time lag will Increase and the late stages will always be governed by a 
law of the form (27) where A = d3 - da. 

This time lag due to the finite reaction zone thickness implies that the 
full carry-over conditions as calculated in this paper will never be quite 
reached although they will be very nearly reached in large charges of fast 
reacting explosives. 

6. Some numerical examples 

Let us assume that for our two explosives we have d2, p2, v2 and hence w2, 
Ca and y, as calculated by some accurate equation of state, and that we wish to 
calculate the initial values p3 and d3 for the unsteady wave.  Substitution in 
(21) and (20) or (22) will show us whether oarry-over exists and if so whether 
the backward travelling wave is a shock or a rarefaction.  Using either (19) 
or the corresponding rarefaction equation we can calculate W3 as a numerical 
function of P3 and graph our results.  Then from (15) 

yrs  can graph w3 as a 
function of p3.  Where the two curves intersect gives the required values of 
p3 and w3, and therefore of d3 from (2). 

The Kistiakowsky-Z/ilson equation of state predicts detonation velocities 
for tetryl in good agreement with experimental results.  We have therefore 
made use of the figures given for this explosive by Brinkley and Wilson (1943) 
to calculate the initial detonation velocity and pressure when tetryl at an 
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initial density of 1.6 gm./c.c. is followed by the sane explosive at a loner 
density*  The results are shown in figures 1 and 2.  In figures 3 and 4 
similar results are given for PETN, based on calculations of Jones (1950) 
using a very general equation of state.  In this case the first or "driving" 
explosive had an initial density of 1.727 gm./c.c. 

The figures give the normal detonation velocity da and pressure ps for 
each explosive when fired alone, for a series of values of initial density 
l/v0, and also the enhanced values d3 and p3 when the explosive is preceded by 
the same material at its highest initial density.  In both cases they show 
that the change in pressure is much more marked than the change in detonation 
velocity provided the difference in initial density is not too great. 

If we regard v0 as a variable then equations (1), (2) and (3), which apply 
to any one-dimensional wave, enable us at least in principle to express any 
three of the unknown quantities w, d, v and p in terms of the fourth together 
with v0; in particular we could express d as a function of v0 and p.  Now the 
results of many hundreds of experiments prove that, for a given explosive fired 
alone under nearly plane wave conditions, d is a well defined function of v0. 
intuition therefore suggests that under such conditions 

(28) 

A little algebra then shows that this is identical with the usual Chapman- 
Jouguet condition.  This form of the condition is beautifully illustrated in 
figures 1 and 3* which show that the d3 and d2 curves touch at the point where 
there is no change of initial density across the interface. 

To complete the discussion it should be further remarked that while for a 
given v0. d is insensitive to small changes in p or v or w, it is immediately 
affected by small changes in q or in atomic composition of the explosive. 

Two further examples are given to show what happens when the succeeding 
explosive is denser than the first.  We have used a Kistiakowsky-Wilson 
equation of state to calculate data for a "plumbatol" taken to be TNT/lead 
nitrate in the proportions 23.5/76.5 by weight at an initial density of 
3.15 gm./c.c. and assuming all the lead to form gaseous Pb 0.  We obtained 
da = 5.68 . 10* cm./sec., wa =1.39 . 10* om./seo.. pa • 2.49 • 1<T1 dynes/ 
sq.cm.  We then found that if this explosive were preceded by TNT of initial 
density 1.6 gm./c.c. (using data calculated by Brinklsy and Wilson, loc.oit.) 
then no carry-over occurred but a weak rarefaction wave reduced the pressure 
behind the detonation zone by some 10£.  On the other hand if it were preceded 
by PETN at an initial density of 1.727 gm./c.c. then the two values <Jf y were 
almost equal but the very high value of q for PETN was more than sufficient to 
compensate for its low density relative to the plumbatol, so that carry-over 
occurred.  Its effect was to increase' the pressure by some 3P^S but the 
detonation velocity by under 3$. 

. Figure 3 illustrates one further point.  If the second explosive has a 
very low density say < .01 gm./o.o. then a very intense rarefaction wave will 
travel back into the detonation products of the first explosive, accelerating 
them to a very high velocity.  Air shock-wave velocities measured beyond the 
end of a cylindrical charge detonated from the other end show that this fluid 
velocity may reach some 8 . 10* cm./sec.  Since the second explosive can offer 
little resistance its detonation products will be driven forward at this speed 
and the detonation front, travelling at somewhat less than sonic speed relative 
to those products will have an absolute velocity of some 10* cm./seo. i.e. 
higher than that of the first explosive fired alone.  The d3 curve will 
therefore have a minimum but details of its shape will depend on the actual 
equation of state. 

7. Conclusions from Part I. 

There is little to be added to the discussion of the results already given 
except to repeat that a constant detonation velocity is no proof of constant 



conditions behind the detonation front.      Again if the initial density of an 
explosive varies from point to point, by not moire than a few percent, the 
detonation velocity will vary with it and since the relationship between the 
two is nearly linear, such variations can be tolerated in measurements of 
detonation velocity as a function of initial density provided the arithmetic 
mean of that density, along the path of the detonation wave, is known 
accurately. 

Measurements of increased detonation velocities due to carry-over can 
provide some additional information on the true equation of state of the 
detonation products.  An equation of state is equivalent to a surface in 
(p, v, T) or (p, v, e) space, and measurements of the variation of the 
detonation velocity with variations in v0 and q enable a narrow strip of 
the latter surface, containing the curve corresponding to normal detonation 
conditions, to be mapped.  Carry-over can be used to widen that strip in 
the direction of higher values of e but not of p.  To extend the strip to 
higher values of p a study of the head-on impact of two detonation waves 
might be used. 
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Part II. The Oblique Case 

8. Introduction 

We limit ourselves to plane waves and steady conditions.  In figure 5 
the two detonation fronts OL and CM intersect in the interface OK between the 

G„---- 

fia ate 5 
two explosives.  The interface OG between the detonation products will in 
general not be a continuation of KO.  If D and d are the detonation velocities 
in the upper and lower explosives respectively and A and a the angles KOL, KOM 
then since 0 moves along the surface OK we must have 

D coseo A = d ooseo a (29) 

For any value of A, (29) gives two values of a and conversely.  There are four 
possible oases but we Shall only consider the one illustrated namely A acute, 
a obtuse*  The case of A obtuse , a acute can be included by interchanging the 
properties of the two explosives.  The case when both are obtuse is not stable 
since the point 0 would in fact travel with a velocity equal to the greater of 
D and d; the tip of the wedge would therefore be blunted and there would be a 
region round 0, whose dimensions increased linearly with time, inside which 
conditions would closely resemble the first case with A near \ ir.      The fourth 
case when both A and a are acute is the intersection of two waves coming from 
independent sources and so is somewhat artificial since their point of 
intersection would not in general follow the interface.  This case will not 
be considered here. 

It is immediately obvious from (29) that if D < d there will be a range 
of values of A, symmetrical about %irt  for which no steady solution is possible. 
The same condition governs total reflection in optics but the analogy ceases 
at that point.  For example, let us take a plane wave in the upper explosive 
bounded on one side by a rigid plane wall parallel to the direction of motion 
of the wave,so that the latter strikes the interface at its junction with the 
wall at some definite time (figure 6).  A cylindrical wave, of nearly circular 
cross-section will then start out from the edge of the interface into the lower 
explosive and will travel along the interface faster than the incident wave. 
It will therefore drive a new plane wave, with a value of A in the permitted 
range of obtuse angles, back into the upper explosive.  The width of this new 
plane wave will increase with time so that conditions will not be strictly 
steady.  There will also be a high pressure region due to the intersection 
of the two waves in the upper explosive. 
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A similar change would occur if an initial value of A could be produced, 
greater than £ ir but in the forbidden range.  This might be done by placing 
the lower explosive behind a rigid corner. 

If we take a co-ordinate system in which the point 0 is at rest then the 
flow is steady and two-dimensional.  It is interesting to find, as we shall 
do, that as A —• 0 and a —*• ir our solutions pass over smoothly into those for 
the one-dimensional unsteady case treated in part I. 

Since we ignore the thickness of the reaction zone no dimension is 
introduced into our problem i.e. conditions are constant along any radius. 
In the detonation products we may therefore have shook fronts radiating from 
0, or Prandtl-Meyer expansions centred on 0.  One condition that must be 
satisfied is that the pressure is the same on both sides of the interface 0G. 
The fluid velocities on each side must also be parallel to OG but not necessarily 
equal, so that in general 0G will be a slipstream. 

If LQM were a shock front, and the lower explosive had a much higher 
acoustic impedance than the upper, then no solutions could be obtained for 
values of A exceeding some critical value, and a Mach wave would be formed. 
The case when the lower explosive is replaced by a perfectly rigid wall has 
been treated by Polachek and Seeger (1945), who give a formula for the limiting 
value of A.  A plane detonation wave however, -travels at sonic speed relative 
to the detonation products behind it and this condition ensures that the 
limiting value of A is £ ir when the lower explosive is replaced by a rigid 
wall.  It is therefore not surprising to find that a Mach wave is never 
formed in the case we consider.  A Mach wave could of course, be formed if 
the incident wave were an overdriven one. 

The reflection of a detonation wave at a rigid wall is essentially the 
same as the intersection of two detonation waves inside a single explosive. 
Hence the above argument shows that Mach waves or jets are never formed under 
such circumstances i.e. there will be no very high-speed detonation wave 
produced although there will be a region, between the reflected shocks behind 
the detonation waves, in which the pressure is increased by a factor of order 
one to five. 
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9. Rarefaction waves in the products of detonation 

We assume in the first place that we have only one explosive, the other 
being replaced "by a vacuum (figure 7).  We now get a complete expansion, the 
products travelling parallel to some direotion OC with zero pressure and 
temperature but a very high velocity w0.  We also assume that over the whole 
range the adiabatic equation for an ideal gas holds, with an exponent y fitted 
to conditions in the early stages of the expansion.  Since we shall subsequently 
cut off the expansion at an early stage the use of a wrong value of y in the 
later stages is of no importance.  For convenience we use small letters for 
our variables but the results apply equally well to either explosive. 

The properties of such a Prandtl-Meyer expansion are well known and 
expansion behind a detonation front has been treated by Staniukovich (1947). 
We shall use his results with a few minor corrections.  The fluid velocity w 
at any point R of the wave has a tangential component equal to the local 
velocity of sound c and if we denote the radial component by u then we have 
from Bernoulli^ theorem 

w0
2 =ua + (y + 1) ca/(y -1) 

= d*icot*a+ //(/ -1)] 

If 9 be the angle COR then since du/d8 = c we can deduce 

u = w0 cos n 9 

c = n w0 sin n 6 

where n2 = (y - l)/(y + 1) 

(30) 

(31) 

(32) 

The local Mach angle m of the flow, which equals the angle between the flow 
direction and the radius vector is given by 

tan m = n tan n 9 (33) 

ty 
If a is acute there will be a direction OB where COB is the angle 80 given 

n tan n 0O = c2/d   cot a 

Y* 1 
tan (34) 
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and at any point on OB the flow will have tangential and radial components Ci 
and d cot a while between OB and OL the flow will be uniform.  Since the 
tangential and radial components of flow at any point on OL are c, and - d cot a 
respectively we find by trigonometry that if fi  is the angle LOB then 

°ot £ 0 = yZ-j  tan a (35) 

On the other hand if a is obtuse then the radial component of flow along 
OL is positive and OB coincides with OL,  i.e0 expansion starts immediately from 
the back of the detonation zone0 

The angle through which the flow is turned from its direction KO before 
encountering the detonation is 

e = a + 0+eo-d + m-ir (36) 

measured in a counter-clockwise direction for the upper explosive and a 
clockwise direction for the lower explosive. 

At the ends of the two expansions, if they occur simultaneously, the sum 
of the two values of e must therefore be zero.  Since the expansion is not 
taken very far the flow is never radial; the expansion therefore stops on a 
line making an angle m with the interface while between that line and the 
interface the flow is uniform. 

The relation between pressure ps and angle e can be derived from (32) and 
the adiabatic relation 

(P»/P*) = (c3/c2)
2v/(y-0 (57) 

10. Shock waves in the products of detonation 

Since a shock wave travels at supersonic speed relative to the fluid it 
is approaching, it will catch up the detonation wave if a is obtuse and give 
an increased detonation velocity.  In figure 8 let OD be the shock front, 
making an angle 6 with the detonation front OL.  Then conditions will be 

rtqure  O • 

uniform between OL and OD and again between OD and the interface.      Let p2, 
u2, w2 be pressure, radial velocity and tangential velocity of the fluid 
approaching OD and P3, u2, w3  those of the fluid leaving OD then since OD is 
stationary we have 

(y + 1) w3  = (y - 1) w2 + 2 c2
2/w2 - 

and Ps = Pa + Pz w2(w2  - w3) J (38) 

wh«re w2 = o2(cos 6 + -^-i— cot a sin 6) 
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These equations determine the shock strength in terms of the angle 6, 

For a given shock strength, i.e. a given value of w2, (38) gives in 
general two solutions for 6.  For a acute, the component of velocity along 
OL is negative and we can easily see that the shock wave with the smaller 
value of 6 is unstable.  This is because a reduction in 6, produced by a 
displacement of OD towards OL would cause a reduction in the component, 
normal to OD, of the fluid flow between OD and OL, so that the shock must 
continue to move forward into that fluid.  An increase in 6 would produce 
the opposite effect.  For a obtuse the converse is true but we cannot have 
the shock wave ahead of the detonation.  Hence only one case can arise, 
namely « acute and 6 the larger root of (38). 

The detonation and shock fronts produce changes in fluid velocity of 
d - C2 and w2 - w3 normal to their respective fronts.  Hence the flow beyond 
OD has components id cot a cos a + o2 sin a - (w2 - w3) sin (a + 6)], 
{(d - c2) cos a + (w2 - w3) cos (a + 8)} parallel to KD and to the downward 
normal to KO.  If e is the angle through which the flow direction has been 
turned, measured in the anti-clockwise direotion, then tan e will equal the 
second component divided by the first.  We have now expressed both p3 and e 
as functions of the parameter 6 and so can construct a curve giving e as a 
function of p3.  This curve will join on to the corresponding curve for the 
rarefaction wave given by (36) and (37) of the previous section, where p3 and 
e are expressed in terms of 9 as parameter.  It should be noted that, at the 
join, p3 = Pa but e ^ 0 since the flow is deflected by the detonation wave 
through an angle 

e0 = tan"
1 {(sin a cos a)/(y + cos*a)] (39) 

11.    Enhanced detonation velooity 

We now consider the case when the shock has caught up the detonation front. 
Cases of practical importance are those for a obtuse.      The acute case would 
appear to be possible e.g.  if the first explosive were gaseous, provided a 
suitable method of initiation could be found, but we shall see later that this 
is not so. 

Using W5  for the tangential velocity i.e.  the component of velocity behind 
the detonation front and normal to it then p3  is given in terms of w3 by 
equation (15).      Adding on the radial component &3 cot a we find for the 
deflection of the flow 

e = a - tan"1(w3/d3 cot o) for a< iff ") 

or e = a - v - tan"*1 (w3/d3 cot a) for a > •£• ir 

We must remember that d3  is no longer the natural detonation velocity but is 
given by 

d3 = Ps v0/w3 (15) 

which may be derived immediately from (1) and (2).  If the velocity of the 
point 0 is to be kept constant then a mast be varied with p3 in the appropriate 
manner. 

12. The nature of the flow 

From figure 9 it will be seen that the (e, p3) curve for the first 
explosive consists of a loop TUVW with tail ST while for the second explosive 
it consists of the curve stuv terminating at the point v on the p3 axis.  In 
general, these curves intersect in more than one point and it is our business 
to decide which point of intersection gives the conditions which will actually 
obtain. 
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The right-hand half VWT of the loop TUVW is given by the smaller of the 
two solutions of (38) for 8.  As explained in § 10, this solution gives an 
unstable shock wave in the first explosive and so is ruled out.  Henoe the 
half loop VWT gives no acceptable solutions. 

Prom the shapes of the two curves we see that we can get at most two 
intersections on the valid part of the curve STUV.  Let one of these inter- 
sections be at the point X and let N and n be the slopes de/dP3, de/dp3 of 
the first and second curves respectively at X.  Suppose n > N then if the 
pressure be increased the deviation of flow e for the first explosive is 
increased less than that of the second explosive, so that the gases tend to 
separate and a rarefaction is produced which lowers the pressure; conversely 
if the pressure is reduced a pressure wave is set up which will restore it. 
The condition is therefore stable.  The same argument shows that a point for 
which n < N represents an unstable condition.  It is clear from figure 9 that 
one condition obtains at one point and the other at the other; we therefore 
get at most one stable solution, and this is the one with the lowest pressure. 
For the case of a detonation wave passing from PETN to plumbatol treated in 
the next section it is gratifying to find that the stable solution passes over 
smoothly to the head-on solution as the angle A -*• 0. 

Since the curve for the first explosive does not cross the e = 0 axis we 
can have cases where the two curves do not intersect at all, giving no stable 
solution.  This happens when equation (29) cannot be satisfied and we get a 
quasi-steady solution as described in § 8.  When the two curves touch we must 
have the critical case, in which o • £ ir. 

In figure 9 we can mark on each curve the point T or t corresponding to 
normal detonation conditions.  If the point of intersection lies above or 
below T there will be a shock or rarefaction wave behind the detonation front 
in the first explosive.  if it lies below t there will be a rarefaction behind 
the detonation front in the second explosive but if it lies above t there will 
be an increased detonation pressure and velocity i.e. a carry-over effect. 

The point T is at the end of the loop for the first explosive (the curve 
terminates at this point).  We could draw such a loop for the second explosive 
by drawing the curve for the angle a'  = w - a, which would be the mirror image 
of stuv in the p, axis.  If the first explosive were very weak the curve STUV 
might intersect the tail of this image curve.  We should then have a solution 
with both A and a acute.  The intersection would probably be above T so that 
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there would be a shock following the detonation front in the upper explosive 
but no carry-over effect.      The criterion given earlier in this seotion shows 
tftat all such solutions are unstable. 

13.    Numerical results 

In figures 10 and 11 pj is plotted as a function of e for the two 
explosives PETN and plumbatol, of which details were given in Motion 6. 
FETN has been taken for the upper explosive with angle of incidence 
(A in figure 5) equal to 60° and 80° respectively.      a has been taken obtuse, 
of course, for the lower explosive.     The loop for the first explosive 
increases rapidly in size as a is reduced.      Only the left-hand side of this 
loop applies to our case since the larger value of e, for a given pj is 
derived from the smaller root for 5 i.e. the unstable case.      The sign of e 
has been reversed for the second explosive so that the point of intersection 
gives conditions at the  interface. 

The points of intersection of the curves have been calculated for other 
values of A and the results are given in the following table.      Since 
p2 = 24.9'. 1010 dynes/sq.cm.  for plumbatol we see that carry-over ceases 
at an angle A a little greater than 60°. 

A p3 dynes/sq.cm. e 

90° 16.5 x 1010 4° 30' 

80° 19.5     - 6° 10' 

60° 26.5     ~ 7° 45' 

40° 30.7     ~ 7° 2' 

20° 31.4     ~ 4° 10' 

0 32.5     - 0 

Figure 12 has been drawn for a detonation wave passing from PETN at high 
density (1.727 gm./c.c.) to PETN at a very low density (0.241  gm./c.o.) using 
the same data as for part I and taking A = 60°.      In this case we get two 
solutions, of which the one with lower pressure is stable.      For this 
combination we see that carry-over will persist until A is increased to 
considerably more than 60°. 

14.    Conclusion 

There is little to add to the discussion given in § 12 except to consider 
the effect of the finite reaction-zone thickness.      Equalisation of pressure 
across that part of the interface which separates the two reaction zones will 
cause that part of the front to be curved,  just as the front of a detonation 
wave travelling along a cylindrical stick of explosive is curved near the 
outer edge (see Eyring et.al., loc.cit.).      The introduction of a unit of 
length implies that our picture, in which fluid properties depend on angle 
alone,  is no longer correct, but since the finite thickness of the reaction 
zone can only produce a finite change in momentum or energy of the system 
per unit area of interface, the true solution must soon approach that given 
here as we get away from the interface.      Our solution is therefore an 
asymptotic one, valid everywhere except near the interface, ancl so will give 
the correct behaviour of the major portion of the wave. 
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